

Broadening our view on nanomaterials:

Highlighting potentials to contribute to a sustainable materials management in preliminary assessments

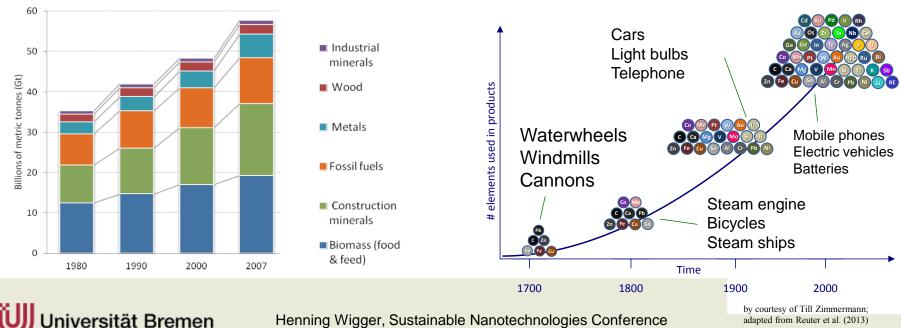
Henning Wigger¹, Till Zimmermann^{1,2}, Christian Pade¹

¹University of Bremen – *Faculty 4 Production Engineering*, Department 10 Technological Design and Development ²ARTEC- Research Center for Sustainability Studies

Sustainable Nanotechnologies Conference, Venice, 9th March 2015

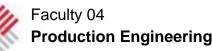
Outline

- Background
- Role of Nanotechnology
- Sustainable Materials Management
- Framework for preliminary assessment
- Case studies
- Conclusion



Increasing use of a variety of elements

Background and need for sustainable Materials Management


 Economic growth is related with increasing resource consumption

Global extraction of materials resources (OECD 2008)

Venice, 9th March 2015

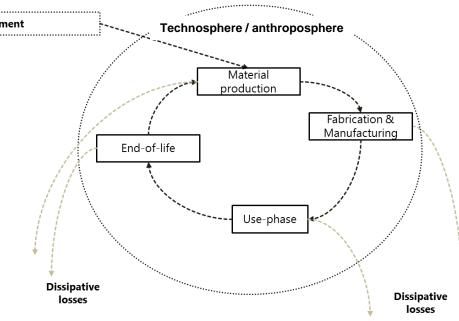
Role of nanotechnology

- Nanotechnology offers many opportunities
 - New and enhanced functionalities
 - Contribution to higher efficiency (less material per product)

— .

- ...but can also add higher complexity to products
 - Low amount of material
 - Higher variety of materials
 - New challenges in recycling at the end-of-life
- Need for integrating further sustainability aspects in a comprehensive assessment
- \rightarrow Sustainable Materials Management in preliminary assessments

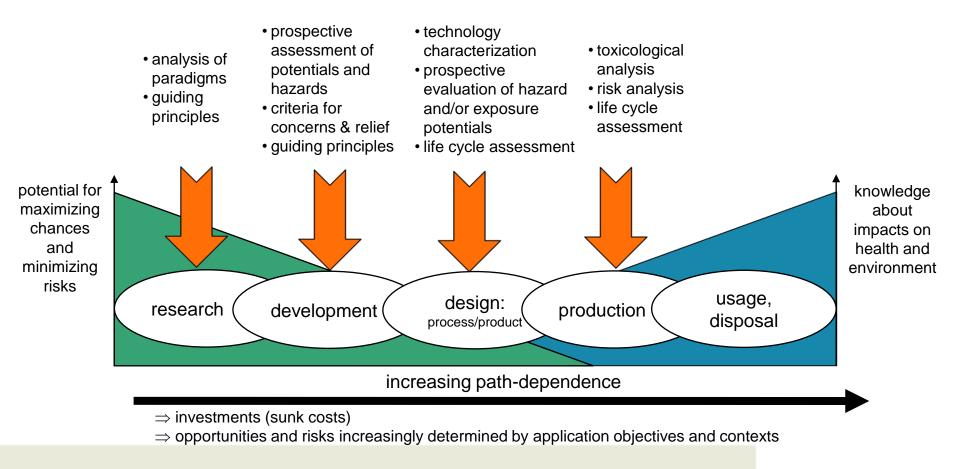
Sustainable Materials Management


"...approach to promote sustainable materials use, integrating actions targeted at reducing negative environmental impacts and preserving natural capital throughout the life cycle of materials, taking into account economic efficiency and social equity" (OECD 2010)

Aiming at:

- Less use of primary resources
- Circular economy
- Entire life cycle
- Gained political relevance

rsität Bremen


- EC: "Towards a circular economy: a zero waste programme for Europe"
- Germany: Circular economy

Challenges in early innovation stages



Proposed Framework categories

- Framework categories proposed to consider sustainable materials management:
 - Resource efficiency
 - Criticality
 - Dissipation and Release

Category Resource efficiency

- Different definitions exist
 - Often narrow focus: material efficiency per functional unit
- Here: use of a broader understanding of resource efficiency:
 - Material and energy inputs,
 - Entire product life cycle including recycling, and
 - Related environmental impacts (i.e., emission of greenhouse gases, not comprehensively considered).

Category Criticality

Criticality is commonly understood as a function of a material's supply risk and its (economic) importance.

				Me	tal	# of crit	icality co	nsiderat	ions	Color							
				RE			12										
1]			Ge,			<u>10</u> 8		_								2
н				G	a		7										He
Hydrogen		_	Te, Co Li, Sb, Nb, W		<u>6</u> 4							_				Helium	
Li	Be		_	Ag, Se,			3					₅B	⁶ C	7 N	o	F	¹⁰ Ne
				Ta, Ni, N			2							"		l .	
Lithium	Beryllium]		Be, V, Cd, Re, Bi,								Boron	Carbon	Nitrogen	Oxygen	Flurorine	Neon
Na	Mg			Zn, Mo, Au, Sr, U		1						AI	Si	15 P	¹⁶ S		Ar
Sodium	Magnesium	1										Aluminum	Silicon	Phosphorous	Sulfur	Chlorine	Argon
⁹ K	Ca	Sc Sc	Ti	23 V	Cr	²⁵ Mn	Fe	27 Co	²⁸ Ni	²⁹ Cu	Zn	Ga	Ge	As	Se	Br	³⁶ Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
Rb	³⁸ Sr	39 Y	⁴⁰ Zr	Nb	Mo	Тс	Ru	⁴⁵ Rh	Pd	Ag	48 Cd	⁴⁹ In	50 Sn	51 Sb	Те	53	54 Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
Cs	56 Ba	57-71	⁷² Hf	Та	⁷⁴ W	Re	⁷⁶ Os	77 Ir	78 Pt	⁷⁹ Au	Hg	TI	Pb	Bi	Po	At	⁸⁶ Rn
Caesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
Fr	Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Ununbium	Ununtrium	Ununqadium	Ununpentium	Ununhexium	Ununseptium	Ununocticu
		58	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Yb	Lu	
		Lanthanum	Cerium 90	Praseodymium 91	Neodymium 92	Promethium	Samarium	Europium 95	Gadolinium 96	Terbium	Dysprosium 98	Holmium	Erbium 100	Thulium 101	Ytterbium	Lutetium 103	4
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	Np	Lr	
		Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Amaricum	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium]
															© Till Z	immerman	n, 2015

Several studies exist Differing in

- Scope
- Time horizon
- Methodological aspects

Henning Wigger, Sustainable Nanotechnologies Conference Venice, 9th March 2015

Exposure

Category Dissipation and Release Environment Technosphere / anthroposphere Material production Fabrication & Manufacturing End-of-life Release Release Use-phase "Releases are (intended or non-intended) emissions of a substance into the environment."

"Dissipative losses are losses of material [...] such that a recovery of these materials is technically or economically unfeasible."

ersität Bremen

Dissipative

losses

Dissipative

losses

Scoring in the Framework categories

Inspired by NanoRiskCat (EHS) by Hansen et al. (2014)

- Probably *significant improvement* by applying NM.
- Probably <u>no</u> significant improvement by applying NM. Probably significant deterioration by applying NM.

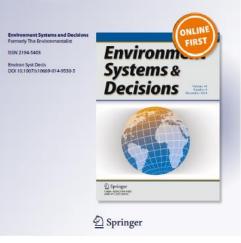
Insufficient information available for a reasonable categorization, further research needed

First indication given for the category, but *further investigations* for confirmation *needed.*

Scoring in the categories:

- Analogous assumptions
- Precautionary manner
 Focus on the product

Wigger et al. (2014)


Faculty 04 Production Engineering

Case studies

- Photovoltaics
- Permanent magnets (substitution of rare earth elements)
- Magnetic resonance imaging (substitution of gadolinium)
- Concrete (substitution of cement)

Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments

Henning Wigger, Till Zimmermann & Christian Pade

Preliminary evaluation

Photovoltaic	Resource efficiency	Criticality	Dissipation & Release
Improved solar cell by plasmonic NP (Au or Ag)			
Rare earth elements-doped nanocrystals solar cells			
Si-nanowires arrays in thin film solar cells			
Substitution of gallium and indium with zinc and tin nanocrystals in thin film solar cells			
			Wigger et al. (2014)

Henning Wigger, Sustainable Nanotechnologies Conference Venice, 9th March 2015

wigger et al. (2014)

Conclusions

- Need to broaden the view on nanomaterials
- Proposed framework for orientation can be used especially in preliminary assessments
- Dissipation and release not improved at all in the considered case studies
- Future studies should
 - also include other sustainable aspects (societal, economical) and
 - consider a weighting of the categories

Discussion & Contact Thank you for your attention!

Contact: Henning Wigger Universität Bremen Department 10 – Technological Design and Development Badgasteiner Str. 1 28359 Bremen – Germany

E-Mail: hwigger@uni-bremen.de **Phone:** +49 - (0)421 - 218-64892

Further reading:

Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments

Henning Wigger, Till Zimmermann & Christian Pade

References

- OECD. (2008) Resource Productivity in the G8 and the OECD. OECD Publishing
- OECD (2012) Sustainable materials management. OECD Publishing doi:10.1787/9789264174269-en
- Hansen SF, Jensen KA, Baun A (2014) NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res 16(1). doi:10.1007/s11051-013-2195-z
- Reuter M., Hudson C., Hagelüken C., Heiskanen K., Meskers C., van Schaik A.; (2013) Metal recycling: opportunities, limits, infrastructure UNEP, Nairobi
- Wigger H., Zimmermann T., Pade C.(2014) Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. Environ. Sys. Decis. doi:10.1007/S10669-014-9530-0

Other preliminary results

Case study	Resource efficiency	Criticality	Dissipation & Release
Permanent magnets (Substitution of rare earth elements)			
Magnetic resonance imaging (Substitution of gadolinium)			
Concrete (reduced cement use through carbon nanotubes)			

Wigger et al. (2014)